

Southern Illinois University System

Applications

- Live video broadcasting
 - Sporting events
 - 4K TV
 - AR and VR
- Fast responsive videobased systems
 - Self-driving vehicles
 - Drone operation
 - Security systems
 - Surveillance systems

Inventor(s)

Chao Lu, (PhD, Purdue University)

Dr. Lu is an assistant professor of electrical and computer engineering at SIU Carbondale. His research focuses on system-level optimization, and HEVC/H.265 video/image processing architecture.

Yuanzhi Zhang

Mr. Zhang is a Ph.D. student researcher of department of electrical and computer engineering at SIU Carbondale. His research interests include VLSI architecture design of multimedia SoC, HEVC algorithm optimization

Contact

Daniel Ashbaugh, JD Technology Transfer Specialist dashbaugh@siu.edu (618) 453-4544

Highly Parallel Hardware Architecture for H.265/HEVC Bit Rate Estimator

HEVC (H.265) debuted in 2013 as a new UHD video compression standard. Though H.265 offers superior performance to legacy H.264 technologies, a dramatic increase in computational complexity has led to processing delays for software-based HEVC intra encoders that make them unsuitable for real-time video encoding applications. Bit rate estimation is typically the most timeconsuming step in video encoding. A primary challenge has thus been to develop reliable, efficient hardware architectures for bit rate estimation to enable real-time high-quality UHD video encoding (e.g. 4K@30fps).

Invention

SIU researchers have developed a highly parallel hardware bit rate estimator in compliance with the HEVC standard. The bit rate estimator features five parallel syntax groups and a CABAC scheme that incorporates feedback to update the context model and improve accuracy. The design has been implemented in Verilog and synthesized in FPGA and ASIC.

Key Advantages

- Supports 4x4 PU and 8x8 up to 64x64 CUs
- Improved estimation accuracy (BD_Rate 0.0518%)
- Higher throughput
- Low hardware cost/area (15.5k gates) and power consumption (9.8 mW)

Status

U.S. nonprovisional patent application #16/389,092 was filed April 19, 2019. The technology is available for license.

Other opportunities related to this technology, included but not limited to sponsored and/or collaborative research, may be available. Please reach out to the designated contact identified at left for more information.